博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Hadoop - WordCount代码示例
阅读量:6583 次
发布时间:2019-06-24

本文共 3705 字,大约阅读时间需要 12 分钟。

文章来源:http://www.itnose.net/detail/6197823.html
import java.io.IOException;import java.util.Iterator;import java.util.StringTokenizer;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.IntWritable;import org.apache.hadoop.io.LongWritable;import org.apache.hadoop.io.Text;import org.apache.hadoop.mapred.FileInputFormat;import org.apache.hadoop.mapred.FileOutputFormat;import org.apache.hadoop.mapred.JobClient;import org.apache.hadoop.mapred.JobConf;import org.apache.hadoop.mapred.MapReduceBase;import org.apache.hadoop.mapred.Mapper;import org.apache.hadoop.mapred.OutputCollector;import org.apache.hadoop.mapred.Reducer;import org.apache.hadoop.mapred.Reporter;import org.apache.hadoop.mapred.TextInputFormat;import org.apache.hadoop.mapred.TextOutputFormat;/** *  * 描述:WordCount explains by Felix * @author Hadoop Dev Group */public class WordCount{    /**    * MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情)    * Mapper接口:    * WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。    * Reporter 则可用于报告整个应用的运行进度,本例中未使用。     *     */    public static class Map extends MapReduceBase implements            Mapper
{ /** * LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口, * 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。 */ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); /** * Mapper接口中的map方法: * void map(K1 key, V1 value, OutputCollector
output, Reporter reporter) * 映射一个单个的输入k/v对到一个中间的k/v对 * 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。 * OutputCollector接口:收集Mapper和Reducer输出的
对。 * OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output */ public void map(LongWritable key, Text value, OutputCollector
output, Reporter reporter) throws IOException { String line = value.toString(); StringTokenizer tokenizer = new StringTokenizer(line); while (tokenizer.hasMoreTokens()) { word.set(tokenizer.nextToken()); output.collect(word, one); } } } public static class Reduce extends MapReduceBase implements Reducer
{ public void reduce(Text key, Iterator
values, OutputCollector
output, Reporter reporter) throws IOException { int sum = 0; while (values.hasNext()) { sum += values.next().get(); } output.collect(key, new IntWritable(sum)); } } public static void main(String[] args) throws Exception { /** * JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作 * 构造方法:JobConf()、JobConf(Class exampleClass)、JobConf(Configuration conf)等 */ JobConf conf = new JobConf(WordCount.class); conf.setJobName("wordcount"); //设置一个用户定义的job名称 conf.setOutputKeyClass(Text.class); //为job的输出数据设置Key类 conf.setOutputValueClass(IntWritable.class); //为job输出设置value类 conf.setMapperClass(Map.class); //为job设置Mapper类 conf.setCombinerClass(Reduce.class); //为job设置Combiner类 conf.setReducerClass(Reduce.class); //为job设置Reduce类 conf.setInputFormat(TextInputFormat.class); //为map-reduce任务设置InputFormat实现类 conf.setOutputFormat(TextOutputFormat.class); //为map-reduce任务设置OutputFormat实现类 /** * InputFormat描述map-reduce中对job的输入定义 * setInputPaths():为map-reduce job设置路径数组作为输入列表 * setInputPath():为map-reduce job设置路径数组作为输出列表 */ FileInputFormat.setInputPaths(conf, new Path(args[0])); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); //运行一个job }}

 

转载于:https://www.cnblogs.com/zhangtongzct/p/6092483.html

你可能感兴趣的文章
Oracle推断值为非数字
查看>>
多年前写的一个ASP.NET网站管理系统,到现在有些公司在用
查看>>
vue-cli中理不清的assetsSubDirectory 和 assetsPublicPath
查看>>
从JDK源码角度看Short
查看>>
五年 Web 开发者 star 的 github 整理说明
查看>>
Docker 部署 SpringBoot 项目整合 Redis 镜像做访问计数Demo
查看>>
中台之上(五):业务架构和中台的难点,都是需要反复锤炼出标准模型
查看>>
使用模板将Web服务的结果转换为标记语言
查看>>
inno setup 打包脚本学习
查看>>
php 并发控制中的独占锁
查看>>
React Native 0.20官方入门教程
查看>>
JSON for Modern C++ 3.6.0 发布
查看>>
Tomcat9.0部署iot.war(环境mysql8.0,centos7.2)
查看>>
我的友情链接
查看>>
监听在微信中打开页面时的自带返回按钮事件
查看>>
第一个php页面
查看>>
世界各国EMC认证大全
查看>>
最优化问题中黄金分割法的代码
查看>>
在JS中使用Ajax
查看>>
Jolt大奖获奖图书
查看>>